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Abstract. The evolution of a turbulent layer generated by velocity shear between two half-spaces of fluid and sup-
pressed by a stable density difference is studied. Initially the layer expands, then shrinks to a point in finite time.
By the end of the expansion stage the turbulent diffusion decays to a small value compared to the shear and
buoyancy inputs in the turbulent energy balance. During the shrinking stage the diffusion decays even further by
comparison. It is shown that at this stage the profiles of the turbulent energy, velocity and buoyancy become
virtually self-similar. The differences between this case and the more usual types of self-similarity, where diffusion
plays significant role, are discussed.
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1. Introduction

Self-similarity solutions are frequently encountered in systems where diffusion (or generally,
dissipation) plays an essential role [1]. This role is to destroy the memory of the system about
the details of initial conditions and continuously destroy the memory of the details of ran-
dom perturbations occurring during the dynamics. It can be said that, when an attracting
self-similarity regime exists, it is the diffusion that drives the system to the attractor. In this
work we analyze a less common situation where self-similarity emerges in a dissipative system
after the diffusion has virtually decayed.

Consider two half-spaces of fluid having different velocities and stable density difference
(Figure 1). Due to the velocity shear, turbulence starts developing and expanding (entraining)
symmetrically upward and downward. Because of the stable stratification, the entrainment is
suppressed by buoyancy forces. Such a process is interesting as a model of a layered structure
in the ocean thermocline, and may also be useful in approximations of the mixing of an oil
spill in the ocean or river with underneath water flows. Our primary purpose is, however, not
to model precisely a particular case of fluid mechanics but rather to investigate fundamentals
of self-similarity, identify its type and analyze differences from more “usual” cases.

Although the above process may look purely notional, it can be simulated in laboratory.
In experiments [2,3] steady flows of gases were separated by a barrier. The flows meet each
other at the tip of the barrier where turbulence starts developing. It was observed that the tur-
bulent layer has sharp boundaries, and the thickness of the layer increases downstream. The
spatial coordinate, x, directed downstream can be linked to the time in our notional situa-
tion, t , as x =uct , where uc is the average velocity of the two initial flows, uc = (u1 +u2)/2;
see [4]. By moving with the average velocity an observer will see a time-dependent local
thickness of the turbulent layer, quite similar to the time-dependent entrainment in the flow
depicted in Figure 1. Some theoretical estimates of averaged flow characteristics relating to
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Figure 1. Initial flow.

the experiments were performed in [4,5]; however, no solutions were obtained for the whole
time period, that is, until the turbulence decays completely.

We will use a short version of the K-� model of turbulence based on a simple closing
assumption about the spatial scale of turbulence. For the horizontally uniform (statistically)
turbulent layer the model is written in the form (see [6], [1, Sections 10.2.2 and 11.3], [7]):

∂tK =γ1∂z(�
√

K∂zK)− γK3/2

�
+γ2�

√
K(∂zu)2 +γ3�

√
K(∂zθ), (1)

∂tu= ∂z(�
√

K∂zu), ∂t θ =γ4∂z(�
√

K∂zθ), (2, 3)

where K(z, t) is the turbulent energy, that is, ensemble-averaged kinetic energy of turbulent
pulsations per mass unit; z is the upward-directed transverse coordinate; θ(z, t) is the aver-
aged buoyancy defined as θ = gρ(z, t)/ρ0, where g is the gravitational acceleration, ρ is the
averaged density, and ρ0 is the reference density; � is the spatial scale of turbulence. Hereaf-
ter we assume γ1 = γ2 = γ3 = γ4 = 1 and γ ≈ 0·06; see [1, p. 281]. Note, however, that specific
values of these constants will not be of principle significance.

In the right-hand side of the energy-balance equation (1) the terms express, from the left,
the diffusion of the energy due to velocity pulsations, dissipation into heat, production by the
velocity shear, and expenditure on work against the buoyancy forces. Equations (2) and (3)
express the turbulent diffusion of the momentum and buoyancy.

To close system (1)–(3) we should somehow specify the spatial scale �. Suggest, similarly
to [1, p. 292], that the turbulent diffusion is predominantly due to large turbulent vortices
with sizes comparable to the thickness of the layer. Accordingly, the scale � will be propor-
tional to the thickness denoted 2h(t):

�(t)=µh(t) , (4)

where µ is a constant coefficient. Thus, the scale � will be a function of time only. Note
that h(t) is a characteristic of a global solution; this renders this version of the K-� model
nonlocal.

Initial conditions for the velocity and buoyancy have the following step-like form:

u(z,0)=





u1 for z>ε

u0(z) for −ε <z<ε

u2 for z<−ε ;
θ(z,0) =






θ1 for z>ε

θ0(z) for −ε <z<ε

θ2 >θ1 for z<−ε .

(5, 6)
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Here the parameter ε defines a narrow initial layer only introduced for the sake of smooth ini-
tial conditions in the numerical experiments. When ε tends to zero, the initial profiles become
ideal steps.

To formulate an initial condition for the turbulent energy, observe from (1) that, in order
to start the dynamics, it is sufficient to seed some non-zero amount of the energy; the energy
will then be pumped up by the shear term. We assume

K(z,0)=





0 for z>ε

K0(z) for −ε <z<ε

0 for z<−ε .

(7)

In (5)–(7) u0(z), θ0(z) and K0(z) are some initial profiles that have no effect on the solution
when ε →0.

Due to the symmetry properties of the initial conditions (5)–(7), the profile of the turbulent
energy at t >0 will be symmetric with respect to z=0 and the profiles of the velocity and buoy-
ancy will be anti-symmetric. Hence, it will suffice to consider only half of the turbulent layer,
say z≥0, provided that appropriate conditions are formulated at the middle point z=0.

By symmetry, such a condition for the turbulent energy is that of zero flux,

∂zK|z=0 =0 . (8)

The values of the velocity and buoyancy in the middle of the layer must equal their respective
average values between the half-spaces. Note here that the dynamical equations only involve
gradients of u and θ ; hence, we may subtract constant values from u and θ and transform to
the new variables,

u(x, t)→u(x, t)− u1 +u2

2
, ρ(x, t)→ρ(x, t)− ρ1 +ρ2

2
with the dynamic equations remaining unchanged. Therefore, for the shifted velocity and
buoyancy, the boundary conditions at z=0 become simply

u(0, t)=0 , θ(0, t)=0 . (9)

Note that for z > 0 the buoyancy is negative since the upper half-space has a lower density.
However, in analogy to an always positive velocity, it will be convenient to deal with a posi-
tively valued buoyancy. So we will multiply the buoyancy by (−1). Accordingly, to restore the
damping effect, the sign of buoyancy term in (1) will be changed to “minus”.

On the turbulent front contacting with the unperturbed laminar flow the turbulent energy
vanishes; hence

K[h(t), t ]=0 , (10)

and the shifted velocity and buoyancy are equal to their respective unperturbed values, viz.

u[h(t), t ]= u1 −u2

2
≡U , θ [h(t), t ]= θ2 − θ1

2
≡gA . (11)

In (11) A stands for the Atwood number measuring the initial buoyancy jump. Choosing the
reference density to be the average of the unperturbed densities, ρ0 = (ρ1 + ρ2)/2, we obtain
from (11): A= (ρ2 −ρ1)/(ρ1 +ρ2), which is the conventional expression for the Atwood num-
ber. Note that U and gA in (11) are halves of the total change of the velocity and buoyancy
across the turbulent layer.

Lastly, the flux of the turbulent energy equals zero on the front:
√

K∂zK

∣
∣
∣
z=h(t)

=0 . (12)
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2. Qualitative analysis and numerical experiment

As a first step, evaluate the terms in the energy equation (1) according to their orders of mag-
nitude and omitting constant coefficients. Replacing the derivatives by finite differences and
assuming �K ∼ K0, with K0 being the maximum energy in the turbulent layer, �z ∼ h and
�∼h, we have

diffusion term∼ K
3/2
0

h
, shear term∼ K

1/2
0

h
, buoyancy term∼K

1/2
0 .

During the early stage of the dynamics, the thickness h(t) is small; therefore, the produc-
tion shear term prevails over the buoyancy term. As a result, the turbulent energy increases
and the turbulent layer expands due to the diffusion. As h(t) gets larger, the buoyancy term
becomes larger in absolute value than the shear term. Being suppressed by buoyancy, the tur-
bulent energy must then decay. When this occurs the diffusion term, which is of higher order
in K0, becomes small in comparison with the buoyancy and shear terms.

We solved system (1)–(4) subject to the initial and boundary conditions (5)–(12) numer-
ically, using U as the velocity scale, gA as the buoyancy scale, U2 as the turbulent energy
scale, U2/(gA) as the spatial scale, and U/(gA) as the time scale. The value of the parameter
ε was chosen small enough, so that neither ε nor the form of the initial profiles u0(z), θ0(z)

and K0(z) had any long-term effect on the solution. The original equations were non-dimen-
sionalized and discretized using finite differences and the system of ODEs was solved in time
with the matlab solver DAE2; see [8].

Note that, in non-dimensional form, the velocity and buoyancy coincide at all times, as
their evolution equations and boundary and initial conditions are the same (assuming ε→0).
Therefore, of the two quantities we will consider only one, the velocity.

The relative decay of the diffusion term is clearly seen in Figures 2–3. At about t = 16 the
numerical experiment was hampered by numerical instability in the vicinity of the front, which
is visible on the last plot in Figure 3. For this reason we did not compute further in time.

Nonetheless, the results shown here indicate that: (a) the diffusion term becomes relatively
small and (b) when this occurs, the shear and buoyancy terms do not counterbalance each
other exactly, with the buoyancy term being substantially larger in absolute value. With diffu-
sion excluded, the expansion of the turbulent layer must cease.

Very recently computations were performed [9] for the whole time range, that is, until the
turbulence decays to zero. They confirmed both effects (a) and (b) (we will comment on [9]
in Section 3.2).

3. Self-similarity regimes and their stability

3.1. Finite turbulent layer

Since the turbulent layer cannot expand infinitely in space, we may seek a solution describing
a regime where the layer reaches finite maximum thickness, at which moment the turbulent
energy decays to zero exactly at all points. It will then be interesting to analyze the stability
of such a regime.

Assuming that the details of the initial distributions u0(z), θ0(z) and K0(z) (see (5)–(7))
in the initially narrow layer are insignificant, we state that the quantities of interest, namely
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Figure 2. Comparison of the terms in energy balance (1) as the turbulent layer expands (t =2, 4, 6, 8, 10, 12). Solid
line – the shear; dashed line – the buoyancy; circles – the diffusion. µ=0·2.
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Figure 3. Continued from Figure 2 (t =14, 16).
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u (cm/s) , θ (cm/s2) , K (cm2/s2) , h (cm) ,

depend on

U (cm/s) , gA (cm/s2) , z (cm) , t (s) .

(13)

Among the independent variables here, two have independent dimensionalities, for example,
U and gA. We transfer now to non-dimensional variables in (13) by non-dimensionalizing all
the quantities, using U and gA, and find that

u

U
,

θ

gA
,

K

U2
,

hgA

U2
depend on

zgA

U2
,

tgA

U
. (14)

Now seek a solution in the form

h(t)gA

U2
=h∗ −β

(

t∗ − tgA

U

)λ

, (15)

where h∗, t∗, β and λ are positive non-dimensional constants. Expression (15) corresponds to
times close to the final moment t∗ when the layer has maximum thickness h∗:

h(t)gA

U2
→h∗ when

tgA

U
→ t∗ . (16)

Denote the time interval left until the moment t∗ by

τ ≡ t∗ − tgA

U
→0 .

Instead of the non-dimensional coordinate zgA/U2, let us consider a normalized coordinate
obtained by dividing this by the non-dimensional combination h(t)gA/U2:

ξ = z

h(t)
, so that conveniently 0≤ ξ ≤1 . (17)

As τ →0, the velocity approaches the limiting profile,

u

U
→P(ξ) . (18)

As was emphasized in the previous section, the non-dimensional velocity and buoyancy
coincide, therefore

θ

gA
→P(ξ) . (19)

The turbulent energy turns zero at the moment t∗, whence we seek K in the form

K

U2
=
(

t∗ − tgA

U

)α

(ξ) . (20)

Substituting (16), (17), (18), (19) and (20) in (1)–(4) and rearranging we have:

−ατα−1− λβ

h∗
τα+λ−1ξ

d

dξ
= µ

h∗
τ 3α/2 d

dξ

(√


d

dξ

)

− γ

µh∗
τ 3α/23/2

+ µ

h∗
τα/2

√


(
dP

dξ

)2

−µτα/2
√


dP

dξ
, (21)

−λβ τλ−1ξ
dP

dξ
=µτα/2 d

dξ

(√


dP

dξ

)

. (22)
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The boundary conditions complementing (21)–(22) result from (8)–(12), (18) and (20):

√


d

dξ

∣
∣
∣
∣
ξ=1

=0 ,
d

dξ

∣
∣
∣
∣
ξ=0

=0 , (1)=0 , (23)

P(0)=0 , P (1)=1 . (24)

In order for (22) to be an ordinary differential equation, the terms with τ should cancel out.
This happens when

λ−1= α

2
. (25)

Taking into account (25), we see that the second term in the left-hand side of (21) is of the
order τα+λ−1 = τ 3α/2, and the first two terms in the right-hand side are also of the order ∼
τ 3α/2. As τ →0 these terms can be neglected in comparison with the lower-order terms con-
taining τα/2. Thus, Equation (21) reduces to

−ατα−1= µ

h∗
τα/2

√


(
dP

dξ

)2

−µτα/2
√


dP

dξ
. (26)

In order for (26) to be an ODE, the parameter τ must disappear, which occurs if

α −1=α/2 , therefore α =2 . (27)

Equation (25) then gives

λ=2 . (28)

Substituting (25) and (27) in (22) and (26), we get two equations to determine P(ξ) and (ξ):

−2
√

= µ

h∗

(
dP

dξ

)2

−µ
dP

dξ
, −2β

µ
ξ

dP

dξ
= d

dξ

(√


dP

dξ

)

. (29)

Denoting

dP(ξ)

dξ
=R(ξ), (30)

we rewrite (29) as

−2
√

= µ

h∗
R2 −µR , −2β

µ
ξR = d

dξ

(√
R

)
. (31, 32)

Substituting
√

 from (31) in (32) yields the 2nd-order ODE for the function R(ξ):

−2β

µ
ξR = d

dξ

[(
µ

2
R − µ

2h∗
R2
)

R

]

. (33)

The solution of (33) is

R(ξ)= 2h∗
3

[

1−
√

1− 3
2h∗

(

C − 2β

µ2
ξ2

)]

. (34)

At the front (1) = 0 (see (23)); hence (31) suggests that either R(1) = 0 or R(1) = h∗. The
numerical experiments show that, during the expansion stage, the velocity has zero gradient
on the front, whence we assume

R(1)=0 . (35)
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The conditions (35) and (34) determine the constant C:

C = 2β

µ2
, (36)

so that (34) becomes

R(ξ)= 2h∗
3

[

1−
√

1− 3β

h∗µ2
(1− ξ2)

]

. (37)

The expression under the square root must be positive for all ξ including ξ =0; therefore

1− 3β

h∗µ2
>0 . (38)

The velocity profile is derived from (30) and (37):

P(ξ)=
∫ ξ

0
R(ξ ′)dξ ′ = 2h∗

3
ξ − 2h∗

3

[
ξ

2

√
1−b+b ξ 2 + 1−b

2
√

b
log

(

ξ

√
b

1−b
+
√

1+ b

1−b
ξ 2

)]

, (39)

where, in view of (38),

b= 3β

h∗µ2
<1 . (40)

The profile of the turbulent energy is determined by (31) and (37):

(ξ)= 1
4
µ2R2(ξ)

(

1− R(ξ)

h∗

)2

. (41)

In view of Equation (40) it is easy to show that

P(1)= 2h∗
3

(
1
2

− 1−b

2
√

b
log

1+√
b√

1−b

)

<
h∗
3

. (42)

From (42) and the boundary condition P(1)=1 we get the following useful estimate

h∗ >3 . (43)

Figure 4 shows the solution for one value of h∗ satisfying condition (43).
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Figure 4. Self-similarity profiles of the velocity (39) and turbulent energy (41) for h∗ =3·5, β =1·09×10−2, µ=0·2.
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Once the similarity solution is found, it is interesting to investigate its stability. Consider
the energy balance (1). The derivative ∂zu at the front, z=h(t), is equal to zero. In the neigh-
bourhood of this point the quadratic term, (∂zu)2, is small compared to the linear term,
∂zθ ∼∂zu. Hence the equation simplifies to ∂tK ∼−√

K∂zu or ∂t

√
K ∼−∂zu<0. Consequently√

K must decrease with time and so must the value of K, as is also a consequence of (20).
Suppose that a perturbation occurs and the velocity profile becomes slightly steeper than it
should be according to the similarity solution. In order to restore the flatter slope, a stron-
ger mixing is required, that is, a stronger supply of the turbulent energy. However, this cannot
occur, as the energy evolves in the opposite direction: due to the perturbation (−∂zu) would
become more negative, and thus

√
K will decay even faster. These arguments indicate that the

obtained similarity solution is unstable.

3.2. Shrinking turbulent layer

We therefore seek a different form of similarity. Assume now that the turbulent layer shrinks:

h(t)gA

U2
=χ

(

t∗ − tgA

U

)λ

, λ>0 , (44)

where t∗ is the moment when the layer turns to a point, and χ and λ are constants. Appar-
ently the value of t∗ is different from the one in the previous section. The velocity and buoy-
ancy (which, as we remember, coincide) are sought in the self-similar form

u

U
= θ

gA
=
(

t∗ − tgA

U

)ω

P (ξ) , ω>0 , (45)

where

ξ = z

h(t)
, 0≤ ξ ≤1 .

The time-dependent multiplier in (45) reflects the geometric effect of a diminishing boundary
value of the velocity on the front as it moves toward the point z=0. Note in this regard that
the turbulent layer shrinks inside the region that is already mixed during the expansion stage.
Therefore, the front of turbulence moves back to the middle point z = 0 through the area
where a non-zero gradient of the velocity (and buoyancy) already exists. This means that the
value of the velocity on the front, z=h(t), decreases with time before turning exactly zero at
the moment t∗. This decrease can be asymptotically described by some power law as reflected
by (45): on the front we have ξ =1 and thus u/U = (t∗ − tgA/U)ω P (1).

The turbulent energy is sought in the form

K

U2
=
(

t∗ − tgA

U

)α

(ξ) , α >0 . (46)

Using the earlier notation

τ ≡ t∗ − tgA

U

we transform the energy equation (1) to

−ατα−1+λτα−1ξ
d

dξ
=µ

χ
τ 3α/2−λ d

dξ

(√


d

dξ

)

− γ

µχ
τ 3α/2−λ3/2

+µ

χ
τα/2+2ω−λ

√


(
dP

dξ

)2

−µτα/2+ω
√



(
dP

dξ

)

. (47)
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In (47) the two non-stationary terms on the left are of the same order in τ . They are also of
the same order as the shear and buoyancy terms, provided that the powers of τ are equal:

α −1=α/2+2ω−λ=α/2+ω . (48)

From (48) we find

ω=λ , and α =2(λ+1) . (49)

Taking into account (49), we see that, in agreement with the numerical results shown in
Figure 2–3, the diffusion and heat-dissipative terms in the turbulent energy equation become
relatively small as τ →0 because

τ 2λ+3 ≡ τ 3α/2−λ 
 τα−1 ≡ τ 2λ+1 .

Hence, Equation (47) simplifies to

−α+λξ
d

dξ
= µ

χ

√


(
dP

dξ

)2

−µ
√



(
dP

dξ

)

. (50)

Upon transformation to ξ , the momentum equation (2) assumes the form

−ωτω−1P +λτω−1ξ
dP

dξ
= µ

χ
τα/2−λ+ω d

dξ

(√


dP

dξ

)

. (51)

Since τ →0,

τλ+1 ≡ τα/2−λ+ω 
 τω−1 ≡ τλ−1 ;

therefore the diffusion in (51) can be neglected and we get

−ωP +λξ
dP

dξ
=0 . (52)

Solving (52) gives P(ξ) = Cξω/λ. Further, the gradient of the velocity in the middle of the
layer, ξ = 0, must be finite (not zero and not infinity) as a result of the mixing during the
expansion stage. During the contracting stage the gradient should remain finite. This dictates
that the velocity profile must be linear (i.e., ω=λ):

P(ξ)=Cξ (53)

(which is equivalent to u=Cz/h(t), 0≤z≤h(t) in dimensional form). Due to (53) the energy
balance (50) reduces to

λξ
d

dξ
=
(

µ

χ
C2 −µC

)√
+2(λ+1) . (54)

Subject to the boundary condition (1)=0, the solution of (54) is

(ξ)= µ2C2

4(λ+1)2

(

1− C

χ

)2 (
1− ξ

λ+1
λ

)2
. (55)

To determine λ, note that the diffusion term is asymptotically small during the layer’s con-
traction; however, this term remains non-zero until the very last moment t∗. Therefore, there



Similarity without diffusion 221

is still the requirement that the energy flux is equal to zero at ξ =0. Solution (55) meets this
requirement automatically for any λ because

λ+1
λ

>1 .

However, there is another requirement that (ξ) be expandable into a Taylor series around
the point ξ =0, because it is merely an internal point of the turbulent layer, so (ξ) must be
as smooth there as it is in other points. This requires the power of ξ in (55) to be an integer
number. The smallest integer value of (λ+1)/λ is 2, therefore

λ=1 . (56)

In view of (56) the turbulent energy (55) is simplified to the form

(ξ)= µ2C2

16

(

1− C

χ

)2 (
1− ξ2

)2
. (57)

The velocity gradient C cannot be determined from the self-similarity problem alone and
depends on the previous dynamics.

From (56) and (49) we obtain

α =4 . (58)

Solutions (53), (57) are shown in Figure 5. Observe from (44), (56) that the thickness of the
turbulent layer diminishes linearly against the remaining time,

h(τ)∼ τ , (59)

and, due to (58), the turbulent energy (46) decays as the fourth power of the remaining time,

K(τ)∼ τ 4 . (60)

Recent numerical experiments [9] confirmed the laws (59), (60), as well as the linear shape
of the velocity/buoyancy profile (53) and parabolic shape of the square root of the energy,√

K ∼√
(ξ)∼1− ξ2; see (57). In the computations, instead of the “usual” non-dimensional

time t1 = tgA/U , the scaled time, t̂1 was used, such that dt̂1 =dt1�1(t1), where �1 =�gA/U2 is
the non-dimensional scale of turbulence. It was found that, for µ=0·2, the layer starts shrink-
ing at t̂1 ≈2 and reduces to a point at t̂1 ≈3·42.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ ξ

Figure 5. Self-similarity profiles for shrinking turbulent layer. Left: turbulent energy, (ξ)16/[µ2C2(1 − C/χ)2],
right: velocity, P(ξ)/C (both normalized).
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Let us now analyze the stability of the regime. The arguments we used previously to show
instability of the finite layer are no longer applicable. As the turbulent layer contracts, the
section of the velocity/buoyancy profile inside the layer approaches a linear shape for a sim-
ple geometric reason: any smooth curve is nearly linear on a short distance (from the point
ξ = 0 in our case). Any perturbation that may affect the dynamics is eventually left outside
the region of interest, which is the turbulent layer. In this situation no returning mechanism
is required.

The fact that in [9] it was the shrinking layer that was observed, and not the finite layer,
supports the arguments on stability.

4. Discussion and conclusion

A self-similarity solution is just one of the many solutions of a nonlinear problem. How-
ever, such a solution is often important as an attractor for other solutions. The self-similar-
ity is normally uncovered by reducing original PDEs to ODEs and applying boundary con-
ditions. It then occurs that the solution only satisfies all the conditions for some special val-
ues – eigenvalues – of power exponents in similarity variables, such as the power exponent of
time (see [1], in particular the example on p. 292 therein).

In our problem the situation is somewhat different. Upon removal of the diffusion term, the
energy balance assumes the form where there are no other solutions except the self-similar one.

To illustrate this point, consider the original energy equation (non-dimensional), which is
a counterpart of (50), only without a priori assumptions of the form of the solution:

∂K1

∂t1
=µh1

√
K1

[(
∂u1

∂z1

)2

− ∂θ1

∂z1

]

. (61)

Here the subscript 1 indicates non-dimensional quantities. As we argued earlier, due to the
diffusion during the expansion stage, the velocity and buoyancy in the middle of the turbu-
lent layer must have finite non-zero gradients. As the layer shrinks later, these profiles become
virtually linear:

∂u1

∂z1
= ∂θ1

∂z1
= 1

χ

dP

dξ
= C

χ
. (62)

Substituting (62) in (61), we obtain

∂K1

∂t1
=−µh1(t1)

√
K1

[
C

χ
−
(

C

χ

)2
]

, where
C

χ
−
(

C

χ

)2

>0 . (63)

Rewrite (63) in terms of k =√
K1:

∂k

∂t1
=− C

2χ

(

1− C

χ

)

µh1(t1) . (64)

Equation (64) is an ODE for k1(t1) with the unknown function h1(t1). The layer’s thickness,
h1(t1), decreases according to a power law:

h1(t1)=χ(t∗ − t1)
λ . (65)

Inserting (65) into (64) and integrating, we have

k(z1, t1)=− C

2χ

(

1−C

χ

)

µ

∫

h1(t1)dt1 +g(z1)=C

2

(

1−C

χ

)
µ

λ+1
(t∗ − t1)

λ+1 +g(z1), (66)
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where g(z1) is a constant of integration. Now apply the boundary condition

k|z1=h1(t1) =0

to (66) and take into account (65):

C

2

(

1− C

χ

)
µ

λ+1
(t∗ − t1)

λ+1 +g
[
χ(t∗ − t1)

λ
]=0 . (67)

From (67), denoting χ(t∗ − t1)
λ by z1, we determine the function g(z1):

g(z1)=−C

2

(

1− C

χ

)
µ

λ+1

(
z1

χ

) λ+1
λ

.

Consequently, from (66):

k(z1, t1)= C

2

(

1− C

χ

)
µ

λ+1

[

(t∗ − t1)
λ+1 −

(
z1

χ

) λ+1
λ

]

= C

2

(

1− C

χ

)
µ

λ+1
(t∗ − t1)

λ+1

[

1−
(

z1

χ(t∗ − t1)
λ

) λ+1
λ

]

= (t∗ − t1)
λ+1 µC

2(λ+1)

(

1− C

χ

)(
1− ξ

λ+1
λ

)
. (68)

Formula (68) describes the self-similarity regime. Taking into account that α = 2(λ + 1) and
k =√

K1 = τα/2
√

, we may easily verify that (68) is equivalent to (55).
It is interesting to look at the role of the diffusion in the formation of the self-similar-

ity. In contrast to “usual” situations, the diffusion term is missing from the energy equation.
However, the diffusion does have a consequence—it justifies the selection of a unique solution,
(57), from a variety of solutions, (55), via the smoothness condition at z=0. But should this
requirement be imposed while the diffusion term is not present in the equation? The answer is
yes because the diffusion was substantial during the expansion stage when the smooth energy
profile was created. Thereafter the profile remains smooth during the shrinking stage.

It is also interesting to classify the self-similarity. According to the classification [1, Chapter
5] all self-similarity regimes are grouped in two classes: complete and incomplete similarity. For
a complete similarity, a dimensional analysis is sufficient to determine the power exponents of
the similarity variables. A textbook example of such a kind of similarity is heat propagation
from an instantaneous point source. The rate of temperature decrease at the source location,
T ∼q/

√
Dt ∼1/

√
t (q is the total amount of heat measured in K·cm, D is the diffusion coeffi-

cient measured in cm2/s) follows immediately from the dimensional analysis as soon as we
realize that T depends on q, D and t . For an incomplete similarity, a dimensional analysis is
not sufficient to establish the power exponents. In such cases the power exponents are obtain-
able from nonlinear eigenvalue problems as we mentioned above (for a detailed description and
examples see [1]).

This also applies to our problem, however, with some alterations. As is typical for incom-
plete similarity, the power exponent α in the expression for the turbulent energy (46) cannot
be determined from a dimensional analysis. This parameter is connected to λ through (49) and
λ appears to be the eigenvalue governed by the boundary condition at ξ = 0. In most cases of
incomplete similarity the boundary condition analogous to zero flux of the turbulent energy
at ξ = 0 would be sufficient to determine the eigenvalue. In our case this is not so because
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the self-similarity solution (55) satisfies this condition for any λ > 0. However, the additional
requirement of smoothness of the energy profile at ξ =0 selects a unique value of λ.

Lastly, we note that the velocity and buoyancy profiles formally belong to a complete
similarity class as they are virtually stationary. We therefore have two types of similarity
within one problem: quasi-incomplete similarity for K and complete for u and θ .

We considered an example of a system related to fluid mechanics, which asymptotically
behaves in a self-similar manner without diffusion. This feature sets the situation apart from
more typical cases of self-similarity where the diffusion is involved as an essential factor
affecting the dynamics.

Specifically, an evolution of a turbulent layer has been analyzed between half-spaces of
fluid having different velocities and densities. The turbulent layer expands during an initial
stage of the evolution pumped up by velocity shear, but the expansion is eventually stopped
by stable stratification. During the late stage of the evolution, the role of turbulent diffusion
becomes negligible compared to the impact from shear and buoyancy.

Two possibilities of the final stage of the dynamics were analyzed: where the layer’s thick-
ness (a) increases up to some finite maximum value (Section 3.1), and (b) shrinks to zero (Sec-
tion 3.2). It was found that regime (a) is unstable while regime (b) is stable and is therefore
physically realistic. Unstable solutions are generally of marginal interest only and we did not
investigate whether or not there are other unstable regimes apart from (a). Peculiarities of the
similarity solution describing the stable regime have been discussed and compared to typical
cases of complete and incomplete similarity.
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